R. A. EPPLER and H. G. DRICKAMER

Table 1. Phosphor crystals—(continued)

			1			
Phosphor	Starting materials		Source		Propositive procedure(c)	
	Host Crystal	Impurity	Host	Impurity	Preparative procedure(s)	Crystal
CsI:Pb	Single crystal CsI	Chemically pure PbCl ₂	Harshaw Chem. Co.	Allied Chem. and	Melting, press fusing	NaCl
CsCl:Pb	Chemically pure CsCl	Chemically pure PbCl ₂	Fisher Scientific Co.	Allied Chem. and	Melting, press fusing	NaBr NaI KCl
NH4Br:Pb	Chemically pure NH4Br	Chemically pure PbCl ₂	Allied Chem. and	Dye Allied Chem . and	Melting, press fusing	KBr KI RbBr
KCl:In	Single crystal KC1:In		Dye Dr. F. E. Williams, General Electric Co.		None	RbI CsBr
KBr:In	Single crystal KBr	Chemically pure In	Harshaw Chem, Co.	A. D. · Mackay, Inc.	Melting, press fusing	0.8KI/0.2K
KBr:Bi	Single crystal KBr	Chemically pure BiCl ₃	Harshaw Chem. Co.	Allied Chem. and Dye	Melting, press fusing	0.4KI/0.4K 0.4KI/0.6K 0.2KI/0.8K
KC1:Cu	Single crystal KCl	Chemically pure CuCl ₂	Harshaw Chem, Co.	Mallinkrodt Chem. Co.	Melting, press fusing	KBr
KBr:Cu	Single crystal KBr	Chemically pure CuCl ₂	Harshaw Chem, Co.	Mallinkrodt Chem. Co.	Melting, press fusing	NaCl NaBr

DISCUSSION

114

The effect of pressure on the Tl+ ion in alkali halide lattices

The effect of pressure on the spectra of the Aband in ten alkali halides activated with thallium has been measured to as high as 158,000 atm. In five cases (NaI:Tl, KCl:Tl, KBr:Tl, KI:Tl and CsI:Tl) the data have been reported previously.(13) The data on the other five phosphors (NaCl:Tl, NaBr:Tl, RbBr:Tl, RbI:Tl and CsBr:Tl) are shown in Fig. 1. For those phosphors which crystallize in the sodium chloride structure (facecentred cubic), the shift with increasing pressure is to lower energy. On the other hand, for those which crystallize in the cesium chloride structure (simple cubic), up to 15,000 atm a shift to higher energy is observed. At higher pressures the shift is to lower energy. A plot of the initial frequency shift vs. pressure for these crystals (see Fig. 2) reveals two important facts. In the first place, the shift is strongly dependent upon the crystal structure, or in other words, the impurity center is dependent upon the bulk crystalline field. On the other hand, no significant

dependence upon the nearest neighbor halides is observed. For example, similar shifts are observed for KI:Tl, KBr:Tl and KCl:Tl. Thus the halide

ions next turbation (This is co consistent At pha potassium continuou observed. alkali iod alkali broi lated to th

PR

Table 2. St tion

> NaC1 NaBr NaI **KCI** KBr

KI

RbCl

RbBr

RbI

CsI NH4Br

NH4I

KCl

KBr

CsC1